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THE OPTIMIZATION OF MULTI-STAGE ORBIT TRANSFER PROCESSES BY DYNAMIC PROGRAMMING

»*
F. T. Smith

The RAND Corporation

INTROQDUCTION

The purpose of this peper is to expand the idea suggested in Ref. 1 of
using a set of variation of parameter equations in an orbit transfer process.
The orbit transfer process in the case considered here involves the correc-
tion of the motion of a space vehicle in some optimum manner.

Reference 1 considers two orbit transfer methods. One 15 a two-stage
exact** method. The other is a single-stage approximate method which mini-
mizes the sum of the weighted squares of the errors in the orbital parameters
existing at the termination of thrust. A generalization of the latter method
is the one discussed here.

Other references considering optimization of orbit transfer processes
are included in the list of references.(ad’u’ 5) These papers use conven-
tional minimization techniques, i.e., setting partial derivatives of func-
tions equal to zero, trial and error methods, ete. This paper considers
the optimization of multi-stage orbit transfer processes by the method of
dynamic programming. Further, due to the linearity of the state transfor-
mation equations and the gquadratic system performeance index used, the

optimizing control vectors are determined by analytical expressions.

*Guida.nce and Orbital Mechanics Research, Electronics Department

*
The method is exact except for small errors involved in linearizing
the equations of motion. .
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THEE VARIATICN QF PARAMETER EQUATIONS

The Equations of Perturbed Metien

The motion of a celestial sbject 15 approximately defined by a
Keplerian arbit which assumes that the only ferce on the object 18 due to
the force field of the central body. A more precise determination ef the
motion of the object requires taking into sccount the pertuxbing effects
of the gravitational fields of other celestial bedies. In the case ef
satellites any nensphericity of the central body vill also perturd the
motion.

The intégration of the equatiens of motion of & celestial object,
vhen perturbing effects are included, is generally cnr::lod m(a’((:xl(%;s
method, Incke's methed, or the variation of pearameters method. '

In vhat follows, the variation of parameters method will be used to
determine the equatiens of perturbed motien.

The motion of a particle in an inverse square central ferve field,
subject to a perturbing acceleration, may be deseribved by the follewing
set of second-erder differentisl equatioms:

&4«

pe R
AR
& y
i.';; g,

vhere: u = (ikv-)2 (no "‘!ll)

*Aleo referred to a3 the variation of elements and variation of
arbitrary constants method.
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f = k' (t-to)*

., a.y, and s, = campenents of perturbing force per unit mass.

These thres seccnd-order equations may be transfermed inte a system of
six first oxder cqmticnl(g)

X = & (xy57) + 2, (x3%) , 1, j=1,...,6

x(0) = ¢, 2 = g

vhere
nex oty foo
Xg = % ‘2"‘“%*2"‘:
3T Y &y o
. ux
xu-y gk--—:gfu-gy
T & TX  fy-o

Qe

R

The functions g, (xdn) contain the effect of the central force field on
the motien of the particle, vhile the functiens 1'1(:311') represent the
effect of the perturbing force. The ¢, are ardbitrary censtants of the
solution representing the initial valuss of the positien and velocity

ccnponentsatt-toar'r-o. When there is no perturbing force the
systen of first order equations reduses to

¥Th. proper choice of k' in this transformation results in a more
convenient unit of time.
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g (x37) 1, 3 =1,...,6
vhere

x,(0) = o, = x; (9),...,Pg} 0)

The perameters PyseessPg BT B set of orbital parameters defining the two-
body orbit. The solution of the two-body equations is given by

xi(r) - x, (yl,...,p6; ), 1=1,...,6

The effect of a amall perturbing force is to cause the orbital parameters
PyreeesPg to vary slowly with time. Thus, Pysre+esPg may be considered as
& nev set of variables, and the solution equations may be considered as a
set of transformation equations frem the variables PyreeeiPg to xl,...,x6.

If we take the total derivatives of the transformatien equations with
respect to time we odbtain

i i
r.Calball. + Z 3P—- G 1=1,...,6
Y

Substituting in the equations of motion we obtain
ax €

aQ
3.1—1 + Z 3;,_3. I‘.,i - g (xJ") + fi (xd;\') 1=1,...,6
I=1 »
Bxi
The partial derivatives r. with PyseeesPg held constant are identical

dx
wvith I‘,—i in the equations for unperturbed motion. Thus

axi
F - gi(xd;1) i = 1,.-.,6

and the equations of perturbed metien become
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5
Bx] dpl 3x] dp6
» & * ~*a'p—6‘rr =0
ox, dp 612 dp
2 6
B, T ooty T ot T (xpv)
axs dpl 8::6 dp6

EEI F+"° +E6- rcaliie f6 (xJ")

In matrix form these equations become

4@ .
J 3 £
a -1
or 3¥ = T f e AP

vhere p = [pl,...,p6]T

T
r = [o, 1, o, £4s O, r6]

—
rsxl Oty Ay
o, &, ox,
% %W, " ¥y

J =
& Oxg &,
1%, Om, T g
L— —

The matrix J 43 the Jacobian matrix of the transformation and has an
(9)

inverse The vector-matrix equation in expanded form becames
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P I Bt h ta T
ar lJl

% a6 T2 * Iue Ty * Je6 Te
ar |J|

Where Jrs is the cofactor of the element in the r-th row and s-th column

of |J

. If the functions fi(xa;'r) are numerically small relative to the
functions gi(x J;1), the right hand members of the differential equations
in the variables p,,...,pg are numerically small relative to the right
hand members of the equations in xl,...,xs, and the parameters Pyse-esPg
vill vary mere slowly than the coordinates XypeeeXge Then domein of
validity of the solution in PysresiPg i8 greatly enlarged over that for
xl,...,xs.(9) In fact, if the interval of time over vwhich the equations of
perturbed motion are applied is sufficiently shert, then the PyseeesPg mAY
be assumed constant on the right hand side of the equation for gE. The
solution 18 then determined spproximately by quadratures, and in vector-

matrix form T

1
p(rl) - p(o)+f Afar
0

vhere P
»(0) = [py(0),-.-,pg(0)]

Lagrange's Brackets
In a practical case where the orbitel parameters Pl" «+sPg Bre speci-

fied and the equations are to be obtained in literal form it may be
simpler to solve for the time derivatives of the parameters by making use

of Lsagrange's brackets. The virtue of this method lies in the fact that
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many of the elements of the matrix to be inverted vanish, and possibly
the resulting matrix can be reduced to a lower dimension than matrix J

before inversion. Let both sides of the vector matrix differential equa-

J g{i - f
be premultiplied by the matrix J°E giving

&
e g 2 - IEr

tion

vhere JT is the transpose of J and E 1s the product of three E-matrices
vhich interchange the first and second, third and fourth, and fifth and
sixth columns of JI and multiply the odd columns of the resulting matrix
by - 1.(20) me matrix & 1s given by

0 1 0o o0 o o
<1 0 0O O 0 ©
o O 0 1 0O O
E =
o 0 -1 © VI ¢)
0 O 0O 0 o 1
0 O ¢ 0 -1 O©
e .4

The resulting equation in expanded form may be written as

n 7] [ap;] &
[pl’ Pl] [pl’ Pa] e [Pl; Pé] a;l f2 Ei + fh

SL¥
SIS

ap, ox x
(%e» 7] [P Pp| (72 ) | | % 55'21' " 352 * 16

* L d

L d

dp ax
[ve» P [P Pp] -+ [P v 1?6‘ 2 ;?6‘ th, 55‘2 1 ;g

L L
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The elements of the matrix JTE J are knewn s Lagrange's brackets, and

they possess the following Wrtiu:(n)

| [pr 3] = ©
[1’1' pJ] - - [pJ, 1’1] 1, J=1,...,6

| 8 ["1’ 1’]

‘ —5— - 0

 Sxp ¥y Ay X, A, ¥y, X
vwhere [Pir pj] = api apJ api ﬁj EJ"‘E Ei
&, O g

1, 3-1,001,6

4 dpj-dpi EJ’

The properties of Lagrange's brackets simplify the matrix JIE J in the
following vays:

o From the first property the elements on the main dfagonal of
JT E J vanisah.
o From the first two properties, the matrix JIE J 18 skew-symmetric.
0 From the third property the brackets do not contsin time explicitly,
and thus they may be evaluated for any epoch. The choice t = t
greatly simplified the expressions for the brackets.
The next step in the derivation involves obtaining the required partial

derivatives, and from them evaluating the non-zero Lagrange's ovrackets.

Derivatives of the Disturbing Functiom

For the case of celestial bodies vhere the components of the per-
’ turbing force L ay, and a, ore the derivatives of a disturbing functien

R, 1-0.,



P-2177

The vector J’TE f is given by

-
oR
3p;
oR
%,

JE? = )

R
| % |

The vector on the right follows from the definitions of 1‘2, rk, f6’ X,

x3, and xs since

BRrnEn-
! 1 1
x(t) = x; (pl,-'--,psz 7)
¥(7) = x3(pyse-epgs T)
(1) = x5 (py,esPgs ¥)
Inverting the matrix JE J gives

R (TENTee = ax

Because the first, third, and fifth components of vector f are zero,
the matrix A may be rewritten as a 6 x 3 matrix and vector f may be
vritten as a 3 x 1 vector. These revised forms of A and £ will be assumed

in all thet follows.
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A MULTISTAGE ORBIT CORRECTION PROCESS

The State Transformation Equation

A multistage orbit correction process is defined as consisting of a

series of consecutive thrust vectors applied to vehicle 80 as to transfer

it from one orbit or trajectory to some other. The process may be more

yrecisely defined by specifying the direction and magnitude of the thrust
vector for each separate stage of the process. Alternatively, the change
in the acceleration vector of the vehicle produced by each thrust vector
or the incremental velocity vecter acquired by the vehicle during each
stage of the process may be specified. It is assumed that the initial and
finel erbits have been predetermined by some measuring process.

In the discussion that follows the variation of parameter equations
derived above are used to define the perturbed motion of the vehicls.
The method of dynamic programming ic used to select an optimum
set of incremental velocity vectexrs dafining the orbit transfer process.
The choice of these incremental velocity vectors is based upon minimizing
the sum of the squares of the weighted orbital parameter errors at the
termination of the multistage process and is constrained by the total
amount of propulsive energy aveilable for the process. The equations
derived are in such a form that certain of the final orbital parameter
errors may be weighted more heavily than others if desired.

The variation of parameter equations for the perturbed motion in vec-
tor matrix form are given by

% . oae

where T

P o~ [pyseeesBg)



A = 6 x 3 matrix vhose elements are functions of
Pysee+sPg and t implicitly through the true,

eccentric, or mean ancmaly.
T

£ = [, £, £3)
It wvas pointed out previocusly that if the interval of integratiomn is
sufficiently short and if the components of vector f are amall enough, then
the elements of matrix A may be assumed censtant without making important
errors. Although vector f may not be amall relative to vector g, the
duration of integration will be kept small enough relative to the arbitel
period so that the changes required in PyseeesPg will be small.

The acceleration vector £ is due to the applicatiom of thrust by a

rocket metor. If matrix A is assumed constant over the interval 0S ts'rl

then
! "1
fAfd‘r = A j £(1) At = AAV(rl)
0 0

where

2 T 2 4 -
£(t) dt = |: fl(-t) dr, fa(T) dar, £.(1) d‘t}
Jaow [ Taoe Janw [y

0 0 0

T
- [AVl(‘\'l) N AACH I AV3(11)]

. = AV( 'tl)

The vector AV is the incremental velocity vector acquired during the period

of thrust from 0O to T The vector-matrix differential equation may then

be integrated to
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p(7;) = p(0) + A av(x,)

This equation represents the change in the state of the system as repre-
sented by the orbital parameters from an initial state p(Q) to some state

p(?l) due to acquiring the vector velocity increment AV(< The behavior

1)'
of the acceleration vector £ in producing AV is unimportant at this point
(1.e., dus to comstant thrust, coustant acceleration, ete.).
A somevhat simplified expression for the state transfermation is

given by

Peag T Pt Ay
vhere:

R = »ly)

Pyer * p(fkﬂ)

Ak = Matyix A with its elements cva.luate@ at T = Tk +1

AVk = Incrementsal veloecity vectar acquired during the
time interval frem ¢, to <
k k+l
Consistent with the discussion of the variation of parameter equations the
following assumptions are associated with the state transformation equation:

0 The time interval 11: " Tk i8 small relative to the orbital
period for all values of k = 0, 1,...,N

0 The elements of the matrix Ak are taken as constants during

the time interval =« - 7 and axre evaluated at T = 7t

k¢l 'k k+1’

The System Performance Index

There are two requirements placed on the performance of the system.

¢ The sum of the weighted squares ¢f the errors remaining in the
orbital parameters at the termination of the arbit correctiom
process is to be a minimm.

© The total propulsive energy available to sccamplish the orbit
correction process is limited.
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The performance index is designed to exhibit system behavior consistent

wvith these two requirements.

Let py be the vector representing the desired set of orbital parameters

at the termination of the orbit correction process. Then define

% = Py~ X
a8 the error remaining in the orbvital parameter vector o.t*r-'ck. Using

the state transformation equation we may write

S = Py Pxy - Ay AV

By = Py~ Py.y - A1 Yy

Here, SN represents the errors remaining in the orbitel parameters at the
termination of the orbit correction process. The sum of the weighted

squares of the errors may be expressed as

6'11; QN bN = qll(bpl)2 + c|22(6p2)2 + eeo + q66(8p6)2

vhere: T

B, = [bpl, ) SR 6p6]

&pl,... ,8p6 = Frrors remaining in orbital elements at the
terminatien of the orbit correctien process.

Q - 6 x 6 dlagonal matrix with diagonal elements Qy7°°2%g
Qyqyreceslgg = Weighting factors for orbital parameter errors

The kinetic energy added to or subtracted from the vehicle during the
orbit correction process depends upon the sum of the squares of the magni-

tudes of the incremental velocity vectors for all stages of the process.
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2 2 2
AV;I‘ AV, = (Avk)l + (zwk)2 + (Avk)3

where (Avk)l, (‘“’x)z' (Avk)3 are the compenents of AV,.

The two requirements on system behavior cambine to give the following
performance index for an N-stage process beginning at state Ap(0):
N-1

Zo avy &V,

. T
Iy [ap(0); WVgpeenstVy o] = By Qp By + 2 L

vhere ) is a constant detemined by available propulsive energy. This
performance index is to be minimized by the proper choice of the N incre-

mental velocity vectors AV yeuerVp o

Minimization of the Performance Index by the Methed of Dynamic Progremming

Minimization of 'TN requires the proper choice of N vecters, {.e., it
{s an N-dimensional preblem whisch weuld be rather lengthy to solve by con-
ventional methods. The use of dynamic programing reduces the minimirzation
provlem to N one-dimensional problems which are much simpler to handle.(m)’(l3)

In what follove Qynamic programming wvill be applied to JN to derive

the necessary recurrence relations to permit the computation JN’ bN, and
AVk, k - O, l,ooo,N‘lv

Consider first a one-stage process bveginning at <t and terminating

N-1

at w The performance index becomes

T
Jp = By Gyt VITW-I VN-1

vhers By = Py g - Ay Mg
By1 * Pyt Py

Substituting fer 8, in Jl gives

N
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0
I oe [wgy - A, a) O [wRyy - A Wyl + AN N

T T o, T T,
= 8Py Sy APy - 248Vg, A, Quapy,y V) (Agy Ay * I &V,

vhere
i o o
| |
I3.E01 Oi
°© o

Differentiating Jl vith respect to AvN-l’ setting the result equal to zero,
and solving for AVN-]. glives

-1
Sy g = (A Qg iy, AT AT o

T
= My Ay Sy Py
where

Moy = (Agey gy *2 13).1

The above equation gives the vector AVN-J.

performance index Jl for the system initially in an arbitrary state pﬂ_l.

vhich minimizss the one-stage

Substituting this equation in Jl glves the minimum value of 'Tl'

Ma J) [pg g5 8Vp,) = By O BBy - 2 A’n'fl Q'irv Ay “n'fl Aoy S 8Py y
+ opgy O Ay Mt My T AT o apy
= fpyy (O - O Apy M AT %) Py,

b,
= ey Sy APy
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vhere
Uy = Y- O Ay My Agy O
Also

By = Py - Ay My Ay O APy

= (Ig - Ay My, ‘131 Q) Sy

Next consider a two-stage process beginning with the system in state
Py_2 and terminating in state Pye The one-stage process considered above

becomes the second stage of the two-stage process, and the expression for

J2 is
T T T
s [I’N-a‘ aVy-1° ‘Wn-a] = By QB + M (AVp, AVy ) + AV oAV o)
- I (p. .; AV o)AVt av
1 (Pr-2? V] ¥-2 Vy-2

At this point the principle of optimality is ax:plied(B)

following: An optimal sequence ¢f incremental velecity vectors AV o’

vhich means the

AVl,..., AvN-l has the property that vhatever the initial P, DAY be, and
vhatever choice 1is made for Avd the remaining sequence AVl,...,AVN_l
constitute an optimal sequence with regard to the state Py resulting from

the cholce of AV_. This principle is applied by replacing J) [Py ;5 aVy ]
by its minimized form Apn?l QN-]. APN-I in the expression for Ja and mini-

must

mizing .J’2 with respect to AVN-z

I . Al - T ') T
Min  Jp Pypi AVyys Vg = Mmoo MRy, Qg dRy g t A AV ‘“’N-z)
I Ve o

where from the state transformation equation
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8Ppy * Py Py

Py = Pyo -~ Aygp 8Vyo
= APy o - Ayp My

The expression t0 be minimized with respect to AVN_2 becones

T T oM T ,, T
SPyp Uy Wyp = @ Vo Agp Quy Mg + &V p (App Qg Ay p +AT5) AV,

Proceeding as for '71 we obtain for the optimal AVN-2

-1
&g o ™= (“n'fa U1 Az * M3) ANTQ -1 %P9

= My o Ayp Oy APy

vhere
1l

Moo = (A Gy Ayp M,)”

The minimm value of J2 becomes

0y
Min Iy [Py o) &Vyys &V = SRy p g APy o

av

AV Ne2

N-1’
where

U2 ™ S Y Ape Myo Ape i

The expression for 511 for the two-stage process is somewhat more
cemplicated than for the cone-stage process



By = AByy - Ay AV
- [T - Mgy M1 Awr %) P
[T6 - An1 Moy Aney ) (%P - App Sy
(26 - Awer s Anen %) (%6 - Avee ez Aree Y1l “Pueo

The above process may be carried on for N-stages. However, by carry- -
ing on for several more stages it is evident that recurrence relations

exist for each of the desired quantities. These recurrence relaticns are

AV \

T

N-x Mu.r Aﬂ-r QN~r+1 Apn-r
T

Mu-r = (AN-r Q'l‘l-r+]. Aﬂ-r * AL
T =

Min Jr ApN—r Qm-r ApN-r ? ra=1}1,...,K

Uor = Ygmed ” owed e Mor S Gernl |

)~ J
3 |

A

8N - Tr (16 A‘n—r M‘N-r AN-r -r+ 1) APO

The evaluation of the matrix AN-r for each time Ther+l pesents a
problem. For a system described Ly a linear, comstant coefficient differ-
ential equation the matrix AN-r is constant. In the problem considered
here the matrix A is a function of the components of the state vector p
(i.e., the two-body orbital perameters) &s well as time. However, as
pointed out in Ref. (9), 1f the time interval over which the differential
equations are integrated is sufficiently short, the components of vector p

entering into the elsments of A may be considered as constants for the
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entire process. This assumption 18 Jjustified by the fact that the total

orbital change as defined by Py - po vill of necessity have to be small

because of restrictions on available fuel.
An altermative procedure invelves the following steps
0 Assume A constant for the entire process and compute the
optimal sequence of Avk, k=]1l,..., N-1.
0 Using the optimal Avkcmputepka.ndthenl\k.
© Repeat process using Ak in place of constant A
matrix and determine a new optimal sequence of AV, .

k

© JIterate the above procedure until the changes in Avk is

sufficiently small.

The evaluation of the perameter A is carried out by choosing several

velues ef A and computing the corresponding sequences of optimal AV, .

resulting Avk are tested in

k

The

For the maximm Py - Py expected, the value of )\ can be selected to satisfy

the above inequality. The constant C on the right side of the inequality

is preportional to the total kinetic energy change possible with the

available fuel.
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SOME SPECIAL CASES

Single Stage Orbit Correction Process

It is pessible to transfer fram the initial orbit to ane close to
the desired orbit by one application of thrust. How close the final orbit
and the desired orbit are will depend upon the weights assigned to the
orbital paramster errors between the initial and desired orvits and the
position in the initial orbit at which the correction process is carried
out. The poesidble advantage of a single stage orbit transfexr process is
that it may result in a final orbit satisfying practical requirements with
less expsnditure of fuel and with a less complex guldance system mechant-
zation.

The veriatien of parameter equations derived in Section II are given

by the vecter-matrix equation

B o=

vhich intagrates to -
1

p(t;) = »(0) + j Af dv
0

= p(0) +A AV(Tl)

If we define Ap(0O) as the change required in the orbital parameter vector
to transfer from the initial orbit to the desired orbit, then the residual
errors in the orbital parameters at the end of the single stage orbit

transfer process is given by
5 = ap(0) - A AV('rl)

vhers 5 is the 6 x 1 residusl arbital parsmeter error vector. It will be

possible to choose Av(1l)ta make 5 vanish only for certain special conditions.
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Since these conditions will normelly not be satisfied in prectical cases
it is necessary to choose the camponents of Av(rl) 8o that 8 will be mini-
mizred in accardance vith scme performance index. The ome chosen for dis-
cussion here 15 to minimize the sum of the weighted squares of the compo-
pents ef &, 1.e., to minimire

3 = 8Tqs
where Q 1s a 6 x 6 diagonzl matrix vhose non-zero elements weight the

squares of the individusl orbital parameter errors. From the multi-stage

process derivation the minimizing velocity vector is given by
av(0) = (aTq )™ ATq ap(0)

8ince A = 0 for the performance index considered.
The residual error vecter 5 is also given by

5 = [T - ataTe)t 4] ap(0)

= N ap(0)

For 8 to vanish the matrix N must be singular. It may be shown that this
vill be true only when

AT + @ AF = 0, A¥ = error in position vector

1-c08 nt

= Felnov

n = Mean daily metion

T = Duetion of thrust for single stage precess.
The cxpnsaic? for @ assumes that the magnitude of the thrust vector is so
centrolled that a constant acceleration due to the cerrecting thrust vector
is meintained and the distance from the center of farce 1s constant during
the orbit correction process.
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Two-Stage Orbit Correction Precess

It 1s shown in Ref. (1) that twve successive applications of
thrust are required in general to campletely remeve the errors in the
orbital paremeters. There the system is analyzed in terms of rectangular
caponents of position and velocity, and no ccustyraint is placed on the
amount of energy available to make the complets orbit coxrection. This
situation may be treated as a special case of the amulti-stage process if
masmatvonupwesswithbgbnand)uomltowo.

We have
8y ® Py~ Py Ay 8y = O

Py.g * Ay AV

Py~ Ppg ~ Ane18Vp1 “ A58 * O

This equatien may be writtem as
Agor OVgoy Y Agg 8V = Py

This vector matrix equation represents six linear equations in the six

and AV,

N-2° Let AV and AV

unknown cemponents of AV, N-1 N-2

N-1 make up a

6 x 1 vecter,
[aVyys o R]T = [(avg )y (B g)ps (BVg 1)3s (8¥y g)ys (8V )y AV a)f

and the elements of %-l be designated by ajk’ and the elements of AN-Z

by B We may write

ch
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) %o B3 By Brp Brg] [ (BVyg)y ] [(amy o) ]
%) % %3 Pay Pop Po3| | (AVyy)e (8py )2
. (avy)5 (apy_2)3
. . (aVyg)y | © )
(avy o)
[isl %o * - - 561 (8Vy )5 (4py o)

L — — —

If the time between application of the two thrust vectors is short then
the first and fourth, second and fifth, and third and sixth columns of the
a B matrix vill be almost equal. This means that the determinant of the
@ 8 matrix will be quite small, resulting in very large components of

velocity for a given parameter error vector.

A Specianl Performance Index

Consider the case of a compmunication satellite in 2i-hour, circular
equatorial orbit. Due to perturbing accelerations such s satellite will
vander from its desired reference point and sventually move out of the
ground antenna cone of view (assuming & non-steerable antenna). The
problem is to periodically apply thrust to the satellite s0 as to keep it
within the antenna's cone of view.

From the standard equation for a aone of revolution we may derive the

equation
2 2
2 (AA cos h)€ + (Ah)
tan
’ (1+22
e
~ (AA cos h)2 + (Ah)a
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vwhere § = The cone's generating angle

AA = The angular azimuth error of the satellite position
at the ground antenna.

Ah = The angular elevation error of the satellite position at
the ground antenna.

If AA cos h and Ah are expressed in terms of the errors in the six
parasmeters defining the satellite's orbit tans # becomes a quadratic form

in the erbital parameter errars ap,, 1 = 1,...,6.
tan® § = ap' Q AP
T
wvhere Ap = [Apll---; AP6]

Q = 6 x 6 matrix vhose elements are fumctions of local
sidereal time and the position of the satellite in
its orbit.

At any instant of time the satellite may e assumed to lie on the

surface of a right cireular cone vhese vertex is at the ground antenna and

vhose axis is the line of sight from the antenna to the preferred satellite

position in a perfect 2i-hour, circular, equaterial orbit. If ¢ . 1s the
generating angle of the antsnna come of view we desire to maintain the
following inequality.

tan® g, = Ap° Q AP
At any instent then, the angle @ defined by

1 T 1

$ = tanl [T ap|Z

ie a measure of system performance. Since minimizing § is the same as

minimizing tan® ¢ the performance index for the system is

J = ten® g = BT @



P-2177 -1
25
vwhere 3 is a 6 x 1 vector wvhose components are the errors in the orbital
paraneters remaining at the termination of the orbital transfer process.

The performance index ta.neﬁ may be minimized by dynamic programming
techniques as indicated in Section III, and an energy constant may ve
included if desired. The matrix Q‘N becomes the matrix Q in the above
equation and now has time dependent non-zero off diagonal elements. How-
ever, since the orbit correction process is normally of short duration
relative to the orbital pericd, the elements of Q may be evaluated for the

time of the temmination of the process and assumed constant during the

process.

Further Considerations

The generel multi-stage orbit transfer process reprecents an N-dimen-
sional minimization problem. A solutien by classical minimization tech-
niques requires solving N simultanesous equatians. The use of dynamie
programuing can reduce the N-dimensicnal problem to KN one-dimensional
yroblems. Purther, vhen the state transformation equation is linear and
the system performance index is quadratic, an analytic selution can be
obtained which includes certain types of constraints. The method presented
in this paper is very flexible since

0 Any constraint that can be related to a quadratic function

of velocity m2y be incoxporated.

0 Any desired set of two-body orbital parameters may be used

to foxrmulate the equations of meotien.

0 By properly choosing the elements of matrix QN’ the squares

of the errors on the ta_minal orbital elements may be given

any desired veight.
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0 In the multi-stage process the spacing of the corrective
thrust vectors may be chosen to sult the particular problem
at hand, i.e., rendezvous problem, point-to-point trajec-
tory, satellite orbit, ete.

The recurrence relations were derived assuming a three-dimensionsal
control vector AV. Using this formulation, as wes pointed out in the dis-
cussion of the single-stage correction process, it is impossibvle to drive
the terminal errors to zero, even with no constraints, except under special
conditions. However, when one or two of the orbital pearameter errors are
of special significance they may be weighted very heavily and can be
driven to very small valups at the termination of the process. An alter-
netive formulation is to use the tvo-stagé process discussed previously as
e stage of the multi-stage process., The @ f matrix in the two-stage
formulation becomes the A'N-r matrix in the recurrence relations, and the
AvN-r vector is now a six dimensional vector as defined for the two-stage
process. Of course, for A = O (no constraint) the multi-stage process
degenerates to the two-stag; process with zero terminal errors, i.e., 5N = Q.

A word of casution is in order concerning the use of the method for
numerical computations. The variation of parameter equatioms are based on
strong assumptions of linearity. Care must be taken in designing the pro-
cess so that the resulting changes in orbital parameters during amy one
stage does not exceed the acceptable linear region of the state transfor-

mation equations.
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